C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Operator Theory

Subject Code : 5SC04OTE1		Branch: M.Sc.(Mathematics)	
Semester : 4	Date : 10/05/2016	Time : 02:30 To 05:30	Marks : 70

Instructions:

Q-1

Q-2

Q-2

Q-3

Q-3

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt the Following questions.

SECTION – I

(07)

	a.	Define : Resolution of Identity.	(02)
	b.	Is the following statement true or false? If <i>P</i> is self adjoint then <i>P</i> is normal.	(01)
	c.	If $S, T \in B(H)$ and $\langle Sx, x \rangle = \langle Tx, x \rangle$ then show that $S = T$ for every $x \in H$.	(01)
	d.	Write definition of Unitary operator.	(01)
	e.	e. An operator $T \in B(H)$ and $ Tx = T^*x $ then what can we say about T?	
	f.	Define: $R_{\rm end}(f)$	(01)
			(0-)
		Attempt all questions	(14)
a)		Assume that $M, N, T \in B(H)$, M and N are normal and $MT = TN$ then show that $M^*T = TN^*$	(07)
b)		Prove that : Every non empty closed convex set $E \subset H$ contains a unique x of	(07)
		minimal norm.	
		OR	
		Attempt all questions	(14)
	a)	If T is normal, show that T is invertible if and only if there exists $\delta > 0$ such	(07)
	,	that $ Tx > \delta x $. Also show that If $Tx = \alpha x$, then $T^*x = \overline{\alpha} x$.	
	b)	Let $U \in B(H)$ be unitary operator and $\lambda \in \sigma(U)$ then show that $ \lambda = 1$.	(07)
	~)	Attempt all questions	(14)
	a)	If E is resolution of identity and if $r \in H$ show that $\omega \mapsto E(\omega)r$ is a countably	(11)
	u)	additive H_{-} valued measure on m	(0)
	h)	Show that $ f \perp N - f $ where $f \in B(0)$	(07)
	U)	Show that $ = = = = = = = $	(0)
		Attempt all Questions	(14)
	a)	Attempt an Questions	(14)
	a)	State and prove Spectral Theorem.	

Page 1 || 2

b) Prove that : Let $T \in B(H)$ be normal, there exists a unique resolution of identity E on $B(\sigma(T))$ such that $T = \int_{\sigma(T)} \lambda \, dE(\lambda) = \int_{\sigma(T)} i_{\sigma(T)}(\lambda) dE(\lambda)$

SECTION – II

-	9		
	а.	Following statement is true or false? If $T \in B(H)$ is normal and self adjoint	(01)
		then $\sigma(T)$ lies in the real axis.	
	b.	Write definition of polar decomposition of <i>T</i> .	(01)
	c.	Define : similar operator.	(01)
	d.	If $T \in B(H)$ is Hilbert schmidth operator then $ T _2 = $	(01)
	e.	Is the Following statement is true or false? $B_1(H)$ is an ideal in $B(H)$.	(01)
	f.	If $T \in B(H)$ and E Orthonormal basis then $tr(T) =$	(01)
	g.	Define : trace class operator.	(01)
Q-5		Attempt all questions	(14)
	a)	If $T \in B(H)$ is normal, show that $ T = \sup\{ < Tx, x > : x \in H, x \le 1\}$.	(07)
	b)	Prove that every normal operator has a non-trivial invariant subspace.	(07)
		OR	
Q-5		Attempt all Questions	(14)
	a)	Suppose $T \in B(H)$ is normal and E is its spectral decomposition. If $f \in C(\sigma(T))$	(07)
		and if $\omega_0 = f^{-1}(0)$, show that $N(f(T)) = R(E(\omega_0))$.	
	b)	Suppose $T \in B(H)$ is normal and compact. Then show that $f(T)$ is compact if	(07)
		$f \in \mathcal{C}(\sigma(T))$	
		and $f(0) = 0$. Dose the converse hold?	
Q-6		Attempt all questions	(14)
	a)	Prove that $tr(ST) = tr(TS)$, $S \in B(H)$ and $T \in B_1(H)$	(07)
	b)	Let $T \in B_1(H)$ and E be an Orthonormal basis then show that	(07)
		$\sum < Te, e > < \infty.$	
		OR	
Q-6		Attempt all Questions	(14)
	a)	Let $T \in B_2(H)$ then show that $B_2(H)$ is an ideal in $B(H)$ and $\ \circ\ _2$ is norm on	(07)
		$B_2(H).$	
	b)	If E and F are two Orthonormal basis for H then show that each $T \in B(H)$	(07)
		$\sum Te ^2 = \sum T^*e ^2 = \sum \sum < Te, f > ^2$	

